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The  Cohen  s cheme  for  we igh t i ng  t h e  m e a s u r e m e n t s  u p o n  t h e  l ines of  p o w d e r  p a t t e r n s  is s h o w n  
to  be  inappropr i a t e ,  a n d  a modi f ied  w e i g h t i n g  is p roposed .  E x a m p l e s  a re  g iven  to  i l lus t ra te  t h e  
i m p r o v e m e n t  in  precis ion resu l t ing  f rom t h e  modi f ied  m e t h o d .  

Cohen's method (Cohen, 1935, 1936 a, b, c) of analytical 
extrapolation, to eliminate the effect of the systematic 
errors inherent in all present types of precision cameras, 
is now firmly established as probably the most generally 
useful technique available for the precision determina- 
tion of lattice constants.t One of its chief advantages 
lies in the fact that  the basic analytical extrapolation 
can be extended to a least-squares treatment to reduce 
the effect of random errors in the initial data, and to 
estimate the precision of the calculated parameters from 
the criterion of external consistency (Jette & Foote, 
1935). 

Cohen has given formulae for this least-squares treat- 
ment. In his derivations, however, he has weighted the 
original measurements according to a system which the 
present discussion will show to be not generally appro- 
priate. Consequently, his formulae are found to lead to 
lattice constants that  differ somewhat from the most 
probable, and frequently to an underestimation of their 
precision, as compared with a corrected treatment. 
Since the estimation of the error of a precision measure- 
ment is fully as important as the measurement itself, 
this defect of Cohen's procedure has considerable 
significance, as will be illustrated by several examples, 
even though the changes in the calculated lattice con- 
stants themselves in general are not large. 

* The basic elements of this modified computat ion were 
developed several years ago in an equivalent form, though one 
somewhat less convenient than  tha t  presented below, while 
the author  was employed at  the Magnesitun Laboratories, The 
Dew Chemical Company, Midland, Michigan. 

t A comprehensive survey and bibliography of the subjects 
of systematic errors in X-ray cameras and the precision 
measurement  of lattice constants has been given by Buerger 
(1942, chap. 20), while contributions of more recent date  have 
been made by Warren (1943), Thomas (1948), Ekstein & 
Siegel (1949), and Straumanis (1949). 
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Cohen's analytical extrapolation and least-squares 
treatment 

To treat the systematic errors, Cohen (1935, 1936a) 
proposed modifying the Bragg relationship to 

nh 
2-~ = sin(0+A0) = cos ½(¢ +A¢). (1)* 

Here q~ is the diffraction angle which is measured ex- 
perimentally, and A¢ is the small angle, due to the net 
effect of all the systematic errors, which must be added 
to ¢ to make their sum ¢ + A¢ fulfill the Bragg relation. 
Then, by squaring, expanding the right-hand term by 
Taylor's theorem, and neglecting all powers of the small 
angle A¢ except the first, Cohen obtained 

n2~2 
- ~ =  cos ~. ½¢- ½A¢ sin ¢ (2) 

as the general modified form of the Bragg relationship 
applicable to experimentally measured diffraction 
angles. 

Next Cohen expressed Aqt in the analytical form 
appropriate to the camera used. For back-reflection 
Debye-Scherrer cameras he preferred A ¢ = K I ¢  (cor- 
recting an earlier suggestion of A¢ = K 1 sin ¢) as being 
the best approximation, and Warren (1943) has con- 
firmed this conclusion for the range ¢ ~< 60 °. Similarly, 
for back-reflection symmetrical focusing cameras he 
found A¢ = K9¢ for q~ ~< 60 °. While the functional form 
of A¢ for the third important type of precision camera, 

* Since only back-reflection methods (where the incident 
X-ray beam enters the camera through a hole in the film) are 
sensitive enough to lay claim to precision and at  the same 
time possess a geometry to which the analytical extrapolation 
is easily adaptable, it is convenient to write all formulae in 
terms of the 'back-reflection angle '  ¢ (where ¢ = 1 8 0 ° - 2 0 )  
rather  than in terms of the usual Bragg angle 0. 

I4 
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namely, the Sachs-type fiat-film back-reflection camera, 
has not been discussed previously, the appropriate form 
can be shown to be A¢ = K s sin ¢ cos ¢ (see Appendix 
II). In  all the above relations Ki* is a constant for any 
particular film, but  may vary with successive films, so 
tha t  the numerical value of the constant for a particular 
film is always unknown initially. With careful precision 
technique experience has shown tha t  K is always less 
than  _+ 0.02 and usually less than + 0.005, so tha t  A¢ is 
always small enough to justify the approximations made 
in developing equation (2). 

Next, the generalized interplanar spacing d in (2) is 
rewritten in terms of the lattice constants and the Miller 
indices, giving a n '  observation equation'.  For example, 
choosing the cubic system and a back-reflection Debye 
camera, the specific observation equation becomes 

Tb2~ 2 
4a~ (hg÷kg-Fl~)-FK'½¢'sin ¢=c°s~ ½¢" (3) 

Now, ff two lines having ¢ < 60 ° are available on the 
film, then an equation (3) may be written for each of 
the two measured diffraction angles and solved simul- 
taneously for the unl~uown lattice constant, a 0, and the 
systematic-errors constant, K, since all other quantities 
are determined from the indexing o£ the diffraction 
lines. 

In  computing a 0 from such simultaneous equations 
the assumption is inherent tha t  all the known quantities 
in the equations are exact, hence tha t  the measured 
diffraction angles have been measured exactly.~ How- 
ever, owing to purely physical limitations upon the 
precision of measurements, there must always be small, 
random uncertainties in the measurements of the 
diffraction-ring diameters, and, consequently, uncer- 
tainties in any results computed from them. By 
measuring additional ring diameters-- the more, the 
be t te r - -and  employing a least-squares t reatment  of the 
data, the effect of these ever present uncertainties can 
theoretically be reduced, and the most probable value 
of the lattice constants can be determined. 

Superficially, the technique of least-squares treat- 
ment  is well known, but  the basic principle will bear 
reiteration. Repeated similar measurements upon a 
quan t i ty - - the  same diameter, for example---constitute 
a population; the individual readings deviate from the 
exact (but unknown) value in randomness by  small 
uncertainties, and in general the mean of such a set  of 
readings does also. Similar sets of measurements upon 
similar quantities---other diameters~likewise deviate 
individually from their respective exact values by 
similar small errors in a random fashion; and the same 

* This constant, commonly called the 'drift constant', is 
here denoted by K instead of D (Cohen) to avoid later confusion 
with the camera diameter D. 

t The fact that the measured angles contain systematic 
errors can be considered irrelevant to the following argument, 
for such errors were already accounted for by modifying (1) to  
the generalized observation equation (2), written in terms of 
the diffraction angles actually recorded on the film. 

C O N S T A N T S  F R O M  P O W D E R  D A T A  

is true of their respective means. No amount of re- 
petition of measurements can ever determine such a 
quant i ty  exactly, but  from many repetitions a most 
probable value can be determined. The basic least- 
squares principle leading to the most probable value is 
to minimize the sum of the weighted squares of the 
residuals of the quantities actually measured, where a 
residual by definition is the difference between the 
observed value of a quant i ty  and its calculated value. 

Cohen suggested such a least-squares extension of his 
basic analytical extrapolation, and outlined the com- 
putation procedure as follows. He recast the specific 
observation equation, for example, (3), into the form 

aA + 3D = 7, (4) 

employing the substitutions 

a-n2(h2+k~+12), 3 - ¢  sin ¢, 

7-cos~½¢,  A-A~/(4a~) and D-½K,  

and said tha t  if N equations of the form of (4) were 
available from the measurement of N different lines on 
the film, then the 'normal equations'  to be solved 
simultaneously for the most probable values of the 
unknown parameters A and D have the form 

AZa~ + DZa i ~i = Zai'/i , (5) 
AZai 3i + DZ$~ = Z3~ Ti • 

Weighting the original o b s e r v a t i o n s  

In taking the normal equations (5) to represent the 
least-squares development of (4), two assumptions 
regarding the observation equation are necessarily im- 
plied (Deming, 1943; Worthing & Geffner, 1943). These 
assumptions are: (1) tha t  only the ~i quantities are 
subject to error, and (2) tha t  the most probable values 
for the parameters are those tha t  minimize the sum of 
the equally weighted squares of the residuals of T. 

The first assumption is an approximation. The ring- 
diameter measurements are clearly the fundamental 
quantities subject to random uncertainties, and there- 
fore rigor demands tha t  in a direct solution both 3 and 

should be considered subject to error, since both are 
functions of these diameter measurements. However, 
it will be shown later tha t  ignoring the uncertainties in 

is equivalent in its effect on the computation to an 
alternate approximation tha t  can be fully justified. 

The second assumption, however, appears to violate 
the basic least-squares principle of minimizing the sum 
of the weighted squares of the residuals of the quantities 
actually measured. In  justifying this assumption Cohen 
has reasoned tha t  the ring diameters are not similar 
quant i t ieswthat  the diameter measurements do not 
constitute a single population--because the diffraction 
lines are broadened as ¢ approaches zero, owing to such 
causes as inhomogeneities in the structure and tem- 
perature variation in the specimen during the exposure. 
Consequently, line centers for lines having small ¢ angles 
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were believed to be less well determined than the 
centers for lines of larger back-reflection angle. He has, 
therefore, proposed that  the ring-diameter measure- 
ments should be weighted inversely with the square of 
this broadening, and has deduced that  the net effect of 
such weighting was to make the derived observations on 
7 approximate a population. Hence, he concluded that  
the sum of the equally weighted squares of the residuals 
of ~" should be minimized, as he has done in his pro- 
cedure. 

Cohen's argument is unconvincing, however, since the 
conditions of inhomogeneities in the structure and tem- 
perature fluctuation in the specimen during the ex- 
posure, upon which his argument is based, are them- 
selves incompatible with accepted precision technique. 
I t  is desirable, therefore, to re-examine the subject of 
the weighting of line measurements for patterns where 
excessive line broadness clue to these causes is absent. 

Several years ago the present writer noted, for 
patterns with the line broadening due to inhomo- 
geneities in the structure prevented by careful pre- 
liminary specimen preparation, and with the tem- 
perature variation during exposure reduced to less than 
_+ 0-3 ° C., that  the line positions of all lines could be 
measured visually to essentially equivalent precision. 

Recently, confirmation of this conclusion has been 
indicated in the results of Ekstein & Siegel (1949) re- 
garding the accuracy of line-position measurements 
from diffraction patterns. They found visual measure- 
ment to be superior to microphotometer measurement 
over the usual range of line widths. Furthermore, their 
data suggest that  experienced observers are able to 
estimate the centers of all diffraction lines, within the 
normal range of line widths, to exactly equivalent 
absolute accuracy (see their Table 1). 

These observations indicate that  there is no justifi- 
cation for Cohen's arbitrary weights with patterns taken 
under accepted standards of precision technique, where 
the limiting factor in line broadness is the spectral 
width of the line itself (Ekstein & Siegel, 1949). Instead, 
the weights of the diffraction-line measurements should, 
in general, be considered equal and independent of ¢. 
To be sure, all lines of a particular pattern cannot neces- 
sarily be measured with equal certainty. Frequently 
very weak lines cause difficulty, and occasionally ex- 
ceptionally intense lines prove troublesome, but these 
effects bear no relation to line width or diffraction angle, 
and, when encountered, the measurements from such 
lines must simply be weighted less, in as objective a 
manner as possible. 

The modi f i ed  normal  equat ions  

I t  now becomes necessary to find new formulae which 
satisfy the principle of minimizing the sum of the 
weighted squares of the residuals of the ring-diameter 
measurements. Still employing as an example the cubic 
system and a back-reflection Debye camera, the former 

observation equation (3), rewritten in terms of the ring 
diameters, 8i, and the camera diameter, D, becomes 

1 A 2 s s s 
a~ 4 n2(h2+lc~+lg)+K°-2-D sin ~ = c o s ~ - ~ .  (3a) 

This new observation equation is non-linear in terms 
of the ring diameters, and the more common techniques 
of least-squares computation are not adequate for the 
task of deriving appropriate normal equations. For- 
tunately, however, Deming (1943) has recently genera- 
lized the Gauss solution of the non-linear least-squares 
problem to include the case where parameters are 
present. Adequate details and proofs of his method 
have been presented elsewhere, hence no review need 
be attempted here. Instead, Deming's systematized 
procedure will merely be accepted and applied to the 
present case.* 

Basically, Deming's method consists of linearizing 
the observation equations by rewriting them as Taylor 
series in terms of parameter residuals, employing 
approximate values of the unknown parameters, and 
then neglecting all powers of these residuals higher than 
the first. All derivatives in the expansion are likewise 
evaluated with the approximate parameters. Therefore, 
in choosing the approximations to be used for the 
parameters, care must be exercised that  the approxi- 
mations are reasonably good, or else the neglected terms 
may not be truly negligible. 

The first step in his systematic procedure is to trans- 
pose all terms of the observation formula to one side 
of the equation, the resulting function being denoted F.  
Later treatment will be simplified, however, if this 
function is recast into the form 

F = A d z +  K o # -  y (6) 

by means of the substitutions 

Ao-1/a~,  

~z- ½h 9" n2(h ~ + k s + 12), 

8 8 
#-~ sin 1)' 

8 8 
-= 1 + cos ~ = 2 cos 9 2-D" 

The next step is to obtain satisfactory approximations 
for the parameters _d o and K 0 . The approximation_da for 
the _do parameter might be secured, for instance, by 
calculation from one of the diffraction-line measure- 
ments, momentarily ignoring systematic errors. For 
the 'drift constant', K 0 , it will become apparent later 
that  zero will always be a sufficiently good approxi- 
mation. We now define the parameter residuals: 

A A = A , ~ - A  o and A K = 0 - K  o. (7) 

* For greater detail, as well as numerous short-cuts and aids 
to actual computation and to estimation of the precision 
indices, reference to Deming's complete treatise (Deming, 
1943) can be heartily recommended. 

I4-2 
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I t  is next necessary to compute values of F o at every 
observed point, where F o is defined as the numerical 
value of the function F at each observed point, evaluated 
furthermore with the appro~mate parameters. Hence 

• Fo=A,,~z-y. (8) 
Derivatives of the function F with respect to each 

of the desired parameters, and likewise with respect to 
each quantity subject to random error, are also re- 
quired. Each derivative is evaluated at every observed 
point, s~, again employing the approximate parameters: 

OF _ F a = a, (9) 
02t 

OF 
OK = FK = 3, (10) 

O F = F _  03 07 1 s [  ( s D)] os- "-K~-~=~Dsin~ l+K l+scot . 

O1) 
Finally, we need the L coefficients (Deming's nota- 

tion) given in the general case by 

L=A (oP]"+± 
wx\Ox] wv\Oy ] + " "  

where x, y, ... are the observed quantities subject to 
error, and wz, wv, ... are the respective weights of these 
quantities. In the present case: 

L 1 F~= I + K  l + ~ c o t  sin s . 
Ws 

02) 
Here, the factors in brackets may be looked upon as 
modifying the observation weight ws. Since K is always 
less than ___ 0.02, the first factor is approximately con- 
stant (within 1%) over the entire useful range of ¢. 
Multiplication of all weights by a constant is pointless, 
however, since weights are fundamentally only relative 
quantities. Furthermore, the initial assignment of 
weights is necessarily too arbitrary, even under the most 
objective procedure, to justify correction for the small 
departure of the factor from constancy, and this entire 
factor may consequently be neglected. Similarly the 
constant 1/D ~ may be dropped, so that  the L coefficients 

become L ~ 1 sin~ s (12a) 
--ws D" 

I t  may be noted that  the above approximation is 
equivalent, in its subsequent effect upon the normal 
equations, to choosing zero as the initial approximation 
for K 0 as already suggested, or alternatively to ignoring 
the errors in 3. 

In terms of the above functions, Deming's 'normal 
equations' become 

F A F a F a F K F a F o "l 
~ z - - - Z - -  + zxgz ---L-- _ Z ---Z--, [ 

AAZ ~ + ~ K Z  FKLFK=z ~ ,  t 
(13) 

or, specifically, for the present case 

AAZcP . - ~ ,  +AKZa3 . ~ ,  = ZaF0 s ~ S  ¢,  t sm 9 sm 9 (13a) 

W s • 

Simultaneous solution then provides AA and AK, which 
in turn can be reduced to A0 and K 0 by (7), and finally 
to a 0. 

Modifications of the above d6rivation" appropriate 
for other crystal systems and other cameras are sum- 
marized in Appendix I. The equations, useful in single- 
crystal work, for the refinement of d spacings are also 
given there. 

Comparison of the procedures 

I t  is instructive to compare these modified normal 
equations with those obtained by the Cohen procedure 
of minimizing the sum of the residuals of 7- For the 
same case of the cubic system and back-reflection Debye 
camera, and employing the same substitutions used 
above, one obtains by the Cohen procedure: 

AAZa~w~ + AKZa3w~ = ZaF0w~, 
AAZa3w~,+AKZ3~.w~,=Z3Fow~," } (14) 

The effect of correcting the Cohen assumption has 
been, therefore, to replace Cohen's weight of each obser- 
vation, % ,  (i.e. unity) with the weight w8 cosec ¢, 
where w8 also is generally unity except for abnormal 
lines. Similarly, with symmetrical focusing cameras, 
the effect of modifying the Cohen argument is to replace 
the weight wv with the weight w~ cosec qS. The modified 
inherent weight for the flat-film back-reflection camera 
becomes w~ cosec2 ¢ sec4¢ instead of % .  A plot of 
these functions is given in Fig. 1. This plot shows that  
over a large portion of the useful range of ¢ the modified 
weights do not depart by more than a factor of 10 from 
the equality assumed by Cohen. Such changes in 
weights have in general a minor effect upon the calcu- 
lated least-squares parameters. However, the very 
large changes in weighting for observations where ¢ is 
small increase the estimated precision calculated from 
the data by using the criterion of external consistency, 
and in a lesser degree they may alter the actual values 
calculated for the parameters. 

To illustrate the differences that  may be expected 
between the two procedures for the average sample, four 
successive patterns of the same sample of Horsehead 
Special zinc were taken in a 10 cm. back-reflection 
symmetrical focusing camera with unfiltered Cu K 
radiation. The resulting data from the ten lines having 

< 60 ° were calculated both by the Cohen procedure 
and by the modified procedure. The f i l l s  were not exact 
duplicates even though the same specimen was used 
throughout. Owing to slight differences in intensities 
and spottiness, a particular line could not always be 
weighted the same in the duplicate determinations; and, 
of course, there were some differences in the ring- 



JAMES B. HESS 213 

diameter data themselves owing to different shrinkage 
of the successive films. Since all lines came from the 
range 17 ° < ¢ < 54 °, where the difference between the 
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Fig. 1. Plot of the weighting functions assumed in the 
modified computation. 

Computed by: 
t ~ Modified method 

r7 Cohen method 
"~ 4.9390 Range shown is +1 standard error 

4"9370 

0 -  

-~ 4"9360 F 

2"6600 

E 2"6580 

8. 
-~ A B C D 

Film no. 
Fig. 2. A comparison of the Cohen and modified computations 

upon successive patterns of a single specimen of zinc. 

weights wv and ws cosec ~ ¢ is minor, the effect upon the 
calculated parameters is slight (see Fig. 2). However, it 
should be noted that  the estimates of improved pre- 
cision derived from the modified procedure are clearly 
substantiated by the consistency of the repeated deter- 
minations. 

In cases where lines of smaller ¢ are available in the 
patterns, then the effect of the difference in the inherent 
weights rapidly assumes importance. Fig. 3, for example, 
compares the two computation procedures on identical 
data from some typical patterns having lines in the 
region ¢ = 6-10 °. 

From these comparisons it is seen that  the Cohen 
computation frequently yields parameters that  differ 
from the most probable parameters calculated by the 
modified procedure, the difference being unpredictable 
both in magnitude and sign. An even more disquieting 
effect of the Cohen method is the frequent and unpre- 
dictable underestimation of the precision of the calcu- 
lated parameters, as illustrated especially by the cases 
B and C of Fig. 2 and D of Fig. 3, where modified com- 
putation shows normal precision. The latter effect is 

3"I 83(] 

E 3.182C 

,.- 3"1810 

~. 3"1800 
ff 

:,~ 3"1790 

3"1780 

Computed by: 
[]  Modified method 
[] Cohen method 

Range shown is + 1 standard error 

A B C D E F 
Alloy no. 

Fig. 3. Comparisons of the Cohen and modified computations 
for patterns of unrelated samples of magnesium-base solid 
solutions from a flat-film back-reflection camera. The com- 
parison is shown only for the more precise 'a' parameter. 

especially important in determining the effect upon the 
lattice constants of some experimental treatment of the 
specimen. An example is given in Table 1, where the 
' t- test '  (Mills, 1938) has been applied to the results 
computed by both procedures from ~he measurements 
of two patterns secured, respectively, b~fore_and after 
a particular heat treatment of the specimen. On the 
basis of the parameters computed by the modified pro- 
cedure, the lattice constants are shown to have been 
altered to a significant degree by the treatment (as was 

Table 1. Comparison of the significance level of the 
difference between specimens when the parameters are 
computed by the Cohen procedure and by the modified 
method Probability 

that the 
difference 

is not 
significant 

(%) 
1 

Before heat After heat 
treatment treatment 

3" 17921 + 0-0004s 3" 18070 + 0-0003s 

3.17954+0.0005 s 3.1807 +0"0014 

Modified 
method 

Cohen 
method 

,-,35 
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also suggested by other physical tests). If, however, one 
were to rely upon the parameters computed by the 
Cohen procedure, it would be necessary to conclude that  
a difference as great as was measured must be expected 
experimentally about one-third of the time from chance 
alone, and, hence, that  the measured change probably 
had no significance. 

These examples of the effect of the Cohen computa- 
tion method upon the lattice constants have been con- 
firmed in many more specific cases where comparison 
computations have been carried out. In addition, some 
further practical confirmation has been indicated from 
many hundreds of lattice-constant determinations by 
the modified computation, which have been made in the 
last few years in the Magnesium Laboratories of The 
Dew Chemical Company. For example, it has been 
noted repeatedly in studies of the effect of various solute 
elements upon the lattice constants of magnesium-base 
solid solutions that  the lattice constant v. composition 
data have exhibited less scatter than had been ex- 
perienced previously in otherwise analogous studies 
when the Cohen computation was employed. In  a few 
cases where earlier determinations were repeated, the 
error bands of the new curves were as much as 50 % 
narrower. In still other studies, significant correlation 
was found between the X-ray parameters and the con- 
current measurements of other properties, like electrical 
conductivity, where analogous earlier studies with the 
Cohen method had almost invariably proved insen- 
sitive. I t  seems fair to conclude that  the slightly greater 
computational effort required for the modified pro- 
cedure has been completely justified by detectible im- 
provement in the precision of the computed lattice 
constants. 

Much of the work reported here was carried out at 
The Dow Chemical Company. Helpful suggestions from 
Professor C. S. Barrett are gratefully acknowledged. 

APPENDIX I 
Modification for other cameras and other crystal 

systems 

The treatment of the cubic system with back-reflection 
Debye camera has already been given. Extension of 
the method to the symmetrical focusing back-reflection 
camera is easily accomplished by modifying the sub- 
stitutions of equation (6) to 

8 8 8 
~ = ~ - ~ s i n ~  and T=l+cos2- -  ~ .  

The normal equations for this case then become identical 
with (13a). 

For the flat-film symmetrical back-reflection camera, 
the specific observation equation for the cubic system 
can be written 

2 4ps~ {l+ 2P } 
l~n2(hgq-k2+12)TKois2+4p2)i (s2 + 4p~) ½ --0, 
a 0 z 

(15) 

where p=film-specimen distance. Hence the appro- 
priate substitutions are 

4p8 ~ 2p 
~--(82+4p2) ~ and 7--1+(s2+4p2) ½. 

The L coefficients can be approximated sufficiently well 

by 1 I (s2+4p2) 3 
L _  ~ -  cosec 2 ¢ see  ¢ = , (16) 

we ws 82 
by an argument analogous to the one used in developing 
equation (12a). The normal equations for this case thus 
become 

We W e 
AAZa "~ sin2 ¢ cos4 ¢ +AKZa3 sin2 ¢ cos4 ¢ 

Ws ¢ 

= Z6cF° sin2 ¢ cos4 (17) 

Ws Ws 
AAZa3 sin2 ¢ cos 4 ¢ +AKZ~2 sin 2 ¢ cos 4 q~ 

Ws 
= ZSFo sins ¢ cos4 ¢.  

Crystal systems having more than one lattice 
parameter are more complicated in requiring additional 
normal equations. The treatment may be illustrated in 
terms of a tetragonal lattice and the back-reflection 
Debye camera. The specific observation equation for 
this case, 

h 9" 2/h2+k 2 12~ . 8 8 c o s 2 ~ ,  
(18) 

may be brought to the form 

F = Aoa + Boil+ Ko3 - y , (19) 

by modifying certain substitutions of equation (6) to 

A o ~_ 1/a~, 
a -  ½~2 n2(h2 + k2), 

Bo-1/~ ,  
fl-- ½A2 n2l 2. 

The quantities 3 and y remain identical with the earlier 
case. Then the normal equations analogous to (13a) 
become 

W 8 W$ 
AAZa 2 ~ + ABZa/? s ~  +AKZa3 w~ 

s ~  ¢ 

Ws 

AAZ~/? s~2~  ¢ + ABZ/?2 we w~ 
s i ~  + AKZfl3 sin2 ¢ 

Ws 

A A Z a ~ s ~ + A B Z , # ~  +AKZ~2 w~ 
sin 2 ¢ 

We 
= Z S F o s ~ .  

(20) 
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Here, too, exactly as was found for the cubic case, 
modification of the quantities 3 and 7 permits extension 
to other cameras. 

Buerger (1942) has adapted the Cohen extrapolation 
for single-crystal work to refine d spacings when ~ and 
n are variable. In  this case the generalized interplanar 
spacing d is retained in the observation equation. For 
example, for a back-reflection Debye camera the obser- 
vation equation becomes 

4d--T+K s i n e = c o s  2 . (21) 

This equation can, in turn, be recast into a form identical 
with (6) by modifying the A o and a substitutions to 
Ao = _ 1/d 2 and a-½n2h% The normal equations of (13a) 
then become the appropriate solution. 

APPENDIX H 

Derivation of the systematic-errors function for 
the fiat-film symmetrical back-reflection camera 

A systematic error is introduced by any error in the 
measurement of the true film-specimen distance. Let p 
be the assumed film-specimen distance, and s be the 
diameter of a particular (hkl) ring on the film. Then, the 
angle ¢ for this particular (hid) plane is given by 

tan ¢ =  ½s/p. (22) 
An error Ap in the distance p causes an error A¢~ in each 
of the calculated back-reflection angles ¢. This error is 

A¢~= _Ap sin ¢ cos ¢. (23) 
P 

Shrinkage of the film introduces an error As in the 
measurement of the line diameter s. Again employing 
equation (22), the error in each calculated angle ¢ is 

given by A¢ s =--As sin ¢ cos ¢. (24) 
8 

There is line broadening, but  no systematic error, due 
to the film being other than perpendicular to the in- 
cident X-ray beam if the film is rotated during exposure. 
Such rotation is normal practice, however, and the 

abnormal case which introduces a systematic error can 
easily be avoided. 

Cylindrical cameras are subject to a systematic error 
due to eccentric mounting of the specimen in the X-ray 
beam, but  no such error can be incurred in the flat-film 
back-reflection method. 

Systematic deviation of the intensity maximum of a 
diffracted line t~om the center of the 'geometric '  dif- 
fracted beam, due to absorption in the specimen, is 
negligible unless the depth of penetration of the X-ray 
beam into the surface of the specimen is of the same 
order of magnitude as the diameter of the defining pin- 
hole. This critical ratio is usually avoided with large 
margin of safety simply by employing normal pinholes 
of 0.020 in. or larger. 

The total systematic error in ¢ will be the sum of all 
the individual systematic errors. That  is 

A¢=A¢~+A¢,=(As/s-Ap/p) sin ¢ cos ¢. (25) 
For uniform shrinkage, As/s is a constant for a given 
film. Similarly Ap/p  is also a constant for a given film. 
The error function may consequently be reduced to the 
simple expression 

A ¢ =  K sin ¢ cos ¢. (26) 
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